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A nominally-zero-pressure-gradient incompressible boundary layer over a smooth
flat plate was simulated for a continuous momentum thickness Reynolds number
range of 80 � Reθ � 940. Transition which is completed at approximately Reθ = 750
was triggered by intermittent localized disturbances arising from patches of isotropic
turbulence introduced periodically from the free stream at Reθ =80. Streamwise
pressure gradient is quantified with several measures and is demonstrated to be weak.
Blasius boundary layer is maintained in the early transitional region of 80<Reθ < 180
within which the maximum deviation of skin friction from the theoretical solution is
less than 1 %. Mean and second-order turbulence statistics are compared with classic
experimental data, and they constitute a rare DNS dataset for the spatially developing
zero-pressure-gradient turbulent flat-plate boundary layer. Our calculations indicate
that in the present spatially developing low-Reynolds-number turbulent flat-plate
boundary layer, total shear stress mildly overshoots the wall shear stress in the near-
wall region of 2–20 wall units with vanishing normal gradient at the wall. Overshoots
as high as 10 % across a wider percentage of the boundary layer thickness exist
in the late transitional region. The former is a residual effect of the latter. The
instantaneous flow fields are vividly populated by hairpin vortices. This is the first
time that direct evidence (in the form of a solution of the Navier–Stokes equations,
obeying the statistical measurements, as opposed to synthetic superposition of the
structures) shows such dominance of these structures. Hairpin packets arising from
upstream fragmented Λ structures are found to be instrumental in the breakdown of
the present boundary layer bypass transition.

1. Introduction
Turbulent spatially developing zero-pressure-gradient incompressible boundary

layer over a smooth flat plate (ZPGFPBL) is an important problem in modern
fluid mechanics. Numerous experimental and theoretical studies on the statistics and
structures of turbulent ZPGFPBL are available in the literature dated as early as Coles
(1956), Favre, Gaviglio & Dumas (1957), and as recent as Hutchins & Marusic (2007),
Monkewitz, Chauhan & Nagib (2007). Hutchins and Marusic studied the large-scale
coherent structures in the logarithmic region while Monkewitz et al. focused on the
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scaling of mean velocity profile at high-Reynolds-number regime. One of the principle
reasons that these studies were possible is that turbulent ZPGFPBL can be routinely
realized in wind tunnels at different laboratories with flush-mounted trip wire for
the promotion of boundary layer transition and with flexible roof for the control of
streamwise pressure gradient, yielding quality data for theoretical analysis.

In contrast to the abundance of experimental data on the turbulent ZPGFPBL,
there exist very few high-quality DNS datasets, regardless of the Reynolds number
regime. In fact, two decades after the publication of the ground-breaking paper by
Spalart (1988), his statistics remain the only widely accepted DNS dataset on the
turbulent ZPGFPBL. The scheme of Spalart (1988) is elaborate and involves a set
of debatable approximations in order to apply the numerically convenient periodic
boundary condition in the streamwise direction. It is interesting to note that the
turbulent channel flow DNS of Kim, Moin & Moser (1987), published at about the
same time, has been reproduced many times by various groups around the world
for purposes of turbulence physics investigation as well as model development. As a
result there exists little controversy regarding the true values of mean and second-order
statistics for the channel flow over the low-to-intermediate Reynolds number range.
The same cannot be said for the turbulent ZPGFPBL. Honkan & Andreopoulos
(1997) compared the second-order turbulence statistics reported by 11 groups on
turbulent ZPGFPBL, with Spalart’s results again being the only DNS ZPGFPBL
dataset in the entire compilation. The figures presented by Honkan and Andreopoulos
demonstrate considerable scatter in the profiles of all the Reynolds stress components
from various groups especially in the near-wall region even at very similar Reynolds
numbers. Given the fundamental importance of the turbulent ZPGFPBL and the
sharp status disparity between the advanced laboratory measurements and the
rather limited success of DNS, there is a compelling reason to revisit the DNS
of spatially developing turbulent ZPGFPBL. This undertaking also brings in the
companion issue of bypass transition in the ZPGFPBL. Analogous to the situation
of turbulent ZPGFPBL, there exist very few solid reproducible DNS statistics that
can be used for modelling and theoretical analysis on the transitional ZPGFPBL
even though in this case computationally generated structural information is
abundant.

1.1. Previous DNS of turbulent ZPGFPBL

The pioneering work of Spalart (1988) simulated a quasi-ZPGFPBL at four discrete
momentum thickness Reynolds numbers, Reθ =225, 300, 670 and 1410. Streamwise
growth of the boundary layer was approximated with a multiple-scaling procedure.
This procedure involves approximate treatment of the dependent and independent
variables as well as approximate treatment of the Navier–Stokes equations. A new
coordinate replaces the wall-normal coordinate along which boundary layer thickness
and viscous sublayer thickness are assumed to be constant with respect to streamwise
distance. It was argued that this is a weak assumption and can only have an indirect
effect on the results. Dependent variables are treated with a set of much more
involved decomposition and transformation procedures in order to make the use of
periodic condition for the fluctuating signals tolerable. The Navier–Stokes equations
and the continuity equation are also transformed accordingly. In the final equation
set, corrections in the viscous terms are neglected, and straining of turbulence by the
mean flow is not accurately represented.

Khurajadze & Oberlack (2004) simulated a flat-plate boundary layer at Reθ up
to 2500 with periodic boundary condition in the streamwise direction. To overcome
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the difficulties associated with non-physical streamwise periodicity, a fringe region
technique was used. The method rescales the boundary layer growth normal to the
wall. In this way the physical domain and the fringe region together satisfy the
streamwise periodic boundary conditions. An extra forcing function was added to
the Navier–Stokes equations in the fringe region which is non-zero only in this region.
At the exit of the computational domain the flow was forced back to be laminar.
Their simulations started with a laminar boundary layer as inflow which was triggered
to transition by adding a random volume force term to the Navier–Stokes equations
near the wall.

There is a large body of published work on generating turbulent inflow boundary
condition for simulation of complex spatially developing external flows; the most
representative paper is perhaps that of Lund, Wu & Squires (1998). Lund et al.
(1998) developed a simplified version of the Spalart method by invoking only the
transformation on independent variables at two streamwise stations without altering
the Navier–Stokes equations. This method and its subsequent variations have been
shown to yield reasonable inflow conditions for complex spatially developing flows
because quite often the downstream pressure gradients and geometrical variations
mask any major defects of the inflow. However, because of their semi-empirical
nature, even with DNS resolution, it would be quite challenging for these methods to
generate results that can be considered as experimental data quality for the turbulent
ZPGFPBL.

In recent years, it has become evident that certain important behaviours of simple
flow statistics such as the mean velocity profile have not been well understood
(Barenblatt & Chorin 1998). Zagarola & Smits (1998) proposed a new scaling law for
the mean flow profiles in the turbulent ZPGFPBL. They expressed doubts about the
existence of any universal overlap region for boundary layers with Reθ < 1800. They
conjectured that for inner variable scaling a log-law velocity profile can exist only for
Reθ > 3000, contrary to the scaling formulas assumed in many of the inflow generation
and rescaling schemes. A power-law dependence of u+ on y+ was proposed for the
mean velocity profile in the intermediate-Reynolds-number range. When normalizing
the wall-normal position in the outer region, boundary layer thickness δ was used.
Regardless of the length scale used, they found that the collapse of u+ or u/U∞ profiles
from different Reynolds numbers was poor in the outer region. However, when the
velocity profiles were normalized by a new velocity scale U∞δ∗/δ, the collapse was
much improved in the outer region; here δ∗ is the boundary layer displacement
thickness. DeGraaff & Eaton (2000) did extensive high-resolution measurements
in a low-speed high-Reynolds-number facility on the turbulent ZPGFPBL from
Reθ = 1430 to 31 000. They found that the streamwise Reynolds stress u

′2 did
not scale on u2

τ even in the near-wall region though the wall-normal Reynolds
stress v

′2 and the Reynolds shear stress collapse well with u2
τ at Reθ > 2000.

They proposed a new mixed scale for the streamwise Reynolds stress component.
For a review of recent progress on mean velocity scaling, see Monkewitz et al.
(2007).

The works of Zagarola & Smits, DeGraaff & Eaton and Monkewitz et al. and
references therein on the scaling of mean and second-order statistics in the turbulent
ZPGFPBL reinforce our notion that fine-resolution simulations incorporating scaling
arguments into their inflow generation scheme impose a bias in the generated
numerical results. This is because it is precisely these scaling behaviours that are
at the centre of debate in recent experimental and theoretical studies on turbulent
ZPGFPBL.
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1.2. Previous DNS of transitional ZPGFPBL

A straightforward way to compute a turbulent ZPGFPBL is to promote the transition
of an upstream Blasius boundary layer, preferably through a mechanism which
bypasses the extremely slow Tollmien–Schlichting route (Rai & Moin 1993). This
is in the same spirit as the routine procedure of mounting trip wires in wind
tunnel experiments. Reasonably successful attempt at taking the incompressible
ZPGFPBL from Blasius to turbulent flow through bypass transition using DNS
was first achieved by Wu et al. (1999), followed later by Jacobs & Durbin (2001).
These full boundary layer bypass transition simulations are important because of their
relevance to turbomachinery applications where upstream blade row wakes trigger
transition on the downstream blades, and because of their marked departure from
traditional computational approaches to transition.

More recent boundary layer bypass transition computations were reported by
Brandt, Schlatter & Henningson (2004), Zaki & Durbin (2005) and Ovchinnikov,
Piomelli & Choudhari (2006). However, these three studies focused almost exclusively
on the issue of bypass transition mechanism. Their boundary layers did not attain a
genuine turbulent ZPGFPBL state from which quality turbulent ZPGFPBL statistical
data could be extracted.

Wu et al. (1999) computed a ZPGFPBL from Reθ = 80 to 1120 on 50 million
grid points. The boundary layer transitioned due to perturbations associated with
migrating wakes introduced periodically at the inlet. The inlet wakes were generated
from a separate temporally decaying wake simulation, and they slid through the inlet
plane along the wall-normal direction at a prescribed frequency. Turbulent statistics
show good comparison with those from Spalart (1988) inside the boundary layer,
although the primary interest and contribution of that study was in studying how
infant turbulent spots were generated in bypass transition. The migrating wakes
produced mean flow distortions even in the free stream which affected turbulence
statistics in the outer region. The imposed inflow condition was less ideal in the
sense that the inlet wake distortion on the Blasius boundary layer was prescribed
in an artificial manner. Only 1024 grid points were applied along the streamwise
direction.

Jacobs & Durbin (2001) computed a ZPGFPBL for a momentum thickness
Reynolds number range of 120 � Reθ � 1000 on 70 million grid points. At the inlet
isotropic turbulence was introduced continuously from both inside and outside the
Blasius boundary layer. Their isotropic turbulence was generated as a sum of Fourier
modes. Similar to the work of Wu et al. (1999), Jacobs & Durbin (2001) concentrated
on investigating the breakdown mechanism in bypass transition. Although their
streamwise turbulence intensity showed good agreement with the experimental data of
Roach & Brierley (1990), there were noticeable discrepancies in all the other turbulent
stress components. Neither the turbulent statistics sampled by Wu et al. (1999) nor
those of Jacobs & Durbin (2001) can be considered as experimental data quality for
the turbulent ZPGFPBL. Comparison of the turbulence statistics with experiments
in those studies was merely used to show that the transition was complete. The only
widely adopted dataset for boundary layer bypass transition modelling is from the
experimental work of Roach & Brierley (1990). Thus, aside from the need for a
genuine spatially developing turbulent ZPGFPBL simulation for turbulent statistics,
there is also a strong motivation to design and execute a benchmark-quality DNS
with well defined and reproducible inflow conditions to obtain flow statistics in the
transitional regime.
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This paper reports our numerical simulation of a nominally ZPGFPBL from the
Blasius regime through transition to turbulence. Our approach is genuinely spatially
developing: without either invoking the non-physical streamwise periodicity or adding
terms to the Navier–Stokes equations. Two primary objectives were to obtain a DNS
dataset for the turbulent ZPGFPBL that is of experimental data quality, and to
acquire a well-documented and reproducible statistical dataset for boundary layer
bypass transition that is of value to modellers. Bypass transition mechanism has
also been investigated. Time-dependent dynamics of turbulence structures are not
dealt with in this paper, although a set of instantaneous visualization images with
striking clarity is presented which provides new insight into the structure of turbulent
boundary layer.

2. Computation details
Several factors were taken into account in designing the simulation. Given a

sufficiently strong finite amplitude perturbation, a laminar boundary layer rapidly
becomes turbulent. However, the final state of the resulting turbulent boundary layer
may not be a realization of the genuine ZPGFPBL if the transition process is not
well controlled: the streamwise pressure gradient may deviate substantially from
zero; the convected finite amplitude perturbations may markedly alter the state of the
downstream flow both inside and outside the boundary layer; perturbations may be
high enough to render linear theory inapplicable; the strong disturbances may even
eliminate the early transitional region which in turn makes it impossible to study the
process of breakdown. Ideally, one should introduce a numerical ‘trip wire’ capable
of promoting bypass transition through weak disturbances which at the same time
leaves well-defined faint footprints on the downstream boundary layer.

Consider the development of an incompressible initially laminar boundary layer
flowing over a smooth flat plate with upstream patches of isotropic turbulence
passing periodically as shown in figure 1. The target streamwise pressure gradient
is zero throughout the computational domain, but this is not achieved precisely in
the simulation. This design has its root in the passing wake simulation of Wu et al.
(1999). Here, the main concerns are to minimize streamwise pressure gradient, and
to reduce disturbance to the boundary layer. This simulation design should be easily
reproducible by other groups with DNS, LES or URANS.

At the inlet station, a Blasius boundary layer of momentum thickness Reynolds
number Reθ = 80 is prescribed. The characteristic length scale is based on the inlet-
boundary-layer momentum thickness θ0 = 1. The origin of the Cartesian system is
located on the wall at the inlet station. The computational domain is 0 � x/θ0 � 6375
in the streamwise direction, 0 � y/θ0 � 1500 in the wall-normal direction and
0 � z/θ0 � 375 along the spanwise direction. Characteristic velocity scale is the
constant free stream velocity U∞ =1. Unless otherwise stated, all the coordinates
are normalized by the characteristic length scale inlet-boundary-layer momentum
thickness θ0. The spanwise dimension of the computational domain is equivalent to
approximately 3.5δ near the exit, where δ is the local boundary layer thickness. This
should be adequate in ZPGFPBL simulations because the spanwise scale of even the
largest eddies in a turbulent ZPGFPBL is generally considered as to be less than
δ (for example, see Tomkins & Adrian 2003). Our spanwise two-point correlation
coefficients collected at Reθ = 900 (not shown here) also confirm that the width of the
computational domain is adequate.
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Figure 1. Contours of v′ over one xy-plane at four consecutive instants. (a) 100T; (b)
100.1T; (c) 100.2T; (d ) 100.55T. White and black colours represent stronger positive and
negative values of v′, respectively. v

′
/U∞ varies from −0.08 to 0.08. The images’ horizontal

(x) to vertical (y) aspect ratio is 1:1 so that the x-axis tick marks can be directly applied to
the y-axis.

At the inlet, patches of isotropic turbulence were introduced at a prescribed
frequency T (see figure 1). Each patch is a slab with dimensions of 375θ0 in each
direction, the same as the spanwise dimension of the boundary layer simulation.
We use ‘slab’ here to emphasize that the patch extends across the entire spanwise
direction, notwithstanding that the real configuration of the turbulent patch is a cube.

The isotropic velocity fluctuations have been obtained from a separate DNS
computation of homogeneous, decaying turbulence provided by Dr Alan Wray, NASA
Ames. This DNS was carried out with a spectral code in a periodic computational
cubic box on a 5123 mesh. The initial spectrum is of the type E(k) ∼ k4 exp(−bk). The
velocity field corresponds to the instant at which the energy has decayed by 50 % and
the skewness has become roughly constant (A. Wray 2008, personal communication).
At this particular instant, squares of the r.m.s. intensities of the three velocity
components are 0.039, 0.041 and 0.039, respectively. In the conversion to real space, the
spectral data for the higher frequencies have been filtered to reduce the data to 2563

of Fourier modes. One-dimensional spectra of the isotropic turbulent flow velocity
components as a function of wavenumber kx are shown in figure 2. Longitudinal (f )
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Figure 2. One-dimensional spectrum of inflow isotropic turbulence as a function of
wavenumber kx . Solid line, Euu; dotted line, Evv; dashed line, Eww; spectrum normalized
by (u

′2
rms + v

′2
rms + w

′2
rms) and length of the isotropic turbulence cubic box.

and transverse (g) two-point correlations of the velocity field agree with the theoretical
relationship g = f + 0.5rdf/dr .

Turbulence intensities of the isotropic turbulence slab relative to the present free
stream velocity U∞ in the x, y, z directions were 0.0594, 0.0609, 0.0594, respectively.
The velocity field of the isotropic turbulence box was introduced into the boundary
layer simulation through the free stream at the inlet station periodically. At the initial
instant t = 0, the box starts to enter the computational domain from x = 0 with the
streamwise velocity Ubox = U∞. Along the wall-normal direction, the box is located
in the region 15 � y/θ0 � 390; that is, the bottom plane of the isotropic turbulence
slab is two-boundary-layer thicknesses away from the wall at the inlet station. In
this manner, the Blasius boundary layer at the inlet is undistorted by the imposed
perturbations which avoids the arbitrariness inherent in prescribing perturbed velocity
profiles inside the layer. At the inlet, x = 0, the isotropic turbulent velocity field is
simply superimposed on the uniform free stream velocity. The passing period T is set
to be 3131.45θ0/U∞ in the present simulation, the same as in Wu et al. (1999). Thus,
at t = 3131.45 or at any integer multiple of T, there is another isotropic turbulence
slab entering the inlet plane. The same isotropic turbulent slab is recycled at each
new period.

The upper boundary of the present computational domain is located at y = 1500θ0

or 200 inlet boundary layer thicknesses away from the wall. This is necessary and
significantly higher than that in most previous boundary layer simulations. At the top
surface of the domain, the following boundary conditions were applied: v = VBlasius ,
∂u/∂y = ∂v/∂x, and ∂w/∂y = ∂v/∂z, corresponding to zero vorticity components.
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Since a large streamwise extent of the domain is transitional, prescribing the analytical
profile of v = VBlasius at the top surface is reasonable. The alternative of obtaining
the v profile at the top boundary using the gradient of δ∗ requires either prior
knowledge of boundary layer growth and transition location or some tedious iterative
procedure. In any case, as clearly demonstrated by figures 6 and 7, our boundary
condition in conjunction with the large distance between the top boundary and the
wall yields a nominally zero streamwise pressure gradient. At the exit plane of the
computational domain x = 6375θ0, convective boundary conditions were used (Pauley,
Moin & Reynolds 1990). Mass flux at the inflow plane was made constant in time
by rescaling the velocities, and corrections to the velocities at the exit plane were also
made to ensure global mass conservation. Periodic boundary conditions were applied
in the homogeneous spanwise z-direction; no-slip condition was applied on the flat
plate.

The finite-difference grid size is 4096 × 400 × 128 along the x, y and z directions,
respectively. Simulation with a coarser grid of 2048×400×128 was also performed but
not presented in this paper. We found that the profile of the skin-friction coefficient Cf

obtained from the coarse grid calculation agreed with that from the fine grid to within
0.5 % for the turbulent region 730 <Reθ < 930. Agreement is also excellent in the early
transitional region for 80 < Reθ < 170, with a maximum deviation of less than 0.05 %.
However, the minimum Cf is attained at Reθ = 230 for the coarse grid simulation
and at Reθ = 270 for the fine grid simulation. The present total of 210 million grid
points is nearly four times larger than that used by Wu et al. (1999) and nearly three
times larger than that by Jacobs & Durbin (2001). Grid spacings in the streamwise
and spanwise directions were �x =1.5563θ0 and �z = 2.93θ0, respectively. Using the
highest computed friction velocity uτ = 0.0475 in the turbulent region, these spacings
can be expressed in wall units as �x+ = 5.91 and �z+ =11.13, respectively. The
spacing in the x-direction is kept small since our previous work on bypass transition
simulations has indicated that inadequate streamwise resolution can have a noticeable
effect on the flow statistics. This is understandable because, in a boundary layer bypass
transition simulation, one needs to resolve not only the near-wall boundary layer flow
but also the free stream disturbance. The current �x+ value of 5.91 is one of the
lowest values that have been used in transitional and turbulent boundary layer
simulations. The minimum grid spacing in the wall-normal direction is �y = 1.3688θ0,
and the maximum spacing is �y = 10.872θ0. In the turbulent region at x = 5981θ0,
Reθ = 900, there are 10 points below y+ = 5, 18 points below y+ = 10 and 175 points
inside the boundary layer. In the transitional region (at x =895θ0, Reθ = 200) close to
the breakdown position, there are 80 points inside the boundary layer. In the early
transitional region at x = 97.5θ0, Reθ = 100, there are 50 points distributed inside the
boundary layer along the wall-normal direction.

The time advancement method used to solve the unsteady three-dimensional
constant density Navier–Stokes and continuity equations is the fractional step method.
Convection and diffusion terms that involve only derivatives in the wall-normal
direction are treated implicitly, whereas all other terms are treated explicitly. Velocity
components are staggered with respect to pressure. Conservation of kinetic energy in
the inviscid limit by the numerical scheme is achieved with the use of staggering.
All spatial derivatives are approximated with a second-order central difference
scheme. A third-order Runge–Kutta scheme is used for terms treated explicitly
and a second-order Crank–Nicolson scheme is used for terms treated implicitly.
Scalable parallelization is achieved using message passing interface (MPI). Details
of the algorithm were described in Pierce & Moin (2001, 2004). The simulation was
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performed using 1024 processors on 128 IBM 8-way P655+ nodes. The computational
time step was fixed at �t = T/2000. The maximum component Courant-Friedrichs-
Lewy (CFL) number defined as �t(|u|/�x + |w|/�z) was approximately 1.35. Note
that the wall-normal direction is treated implicitly. The initial velocity field was
prescribed as the Blasius profile. The flow was allowed to evolve from the initial state
for 100 000�t (50 passing period T) to reach statistically steady state. Statistics were
then collected for another 100 000�t . In addition to averaging in time, the statistical
sample was enhanced by averaging in the homogeneous spanwise direction.

3. Results
3.1. Visualizations

Figure 1 shows images of the present boundary layer using contours of wall-normal
fluctuating velocity component v′ over one xy-plane at four sequential instants:
100T, 100.1T, 100.2T and 100.55T. Note that the isotropic turbulence slab enters
the inflow station every T =2000�t . At the first instant, t = 100T, the isotropic
turbulence slab starts to enter the computational domain from x = 0. It takes 240�t

for the slab to get completely inside the domain. Sections of laminar, transitional
and turbulent boundary layer can be clearly seen in the figure. In the snapshot at
t = 100T, a turbulent patch can be observed centred around x =1700θ0, which has
been induced probably by the passage of the isotropic turbulence slab centred around
x = 2950θ0.

In figure 3, six three-dimensional subimages extracted from the velocity field at the
single instant of t = 100.2T are presented, each focusing on a specified streamwise
zone showing the iso-surfaces of the second invariant of the instantaneous velocity
gradient tensor Q at an approximately zero constant value (Hunt, Wray & Moin
1988). Chakraborty, Balachandar & Adrian (2005) compared several prevailing vortex
identification criteria including that of Hunt et al. They found that all the criteria result
in remarkably similar looking vortical structures. Figure 3(a) shows the introduced
isotropic turbulent slab near the inlet; an induced Λ-shaped structure near the wall is
also visible. In the lower-middle xy-plane image of figure 1 (t = 100.2T), a turbulent
patch can be seen in the region of 1800θ0 < x < 2600θ0. Figure 3(b) clearly shows that
this patch actually consists of two turbulent spots. The spots are packed with hairpin
vortices of different sizes, and some of the hairpins near the trailing tip of the spots are
quite small. Figure 3(c) shows vortex structures in the region of 2625θ0 <x < 3562θ0

behind the turbulent slab centred at x = 3562θ0 at this instant. In the middle of this
image, a longitudinal structure is surrounded by several incomplete hairpin vortex
structures distributed along the streamwise direction. Figures 3(d ), 3(e) and 3(f ) show
vortex structures of the ZPGFPBL at this particular instant in the late transitional
regions of 3562θ0 <x < 4500θ0, 4500θ0 <x < 5437θ0 and in the turbulent region of
5437θ0 <x < 6375θ0, respectively.

The preponderance of hairpin-like structures is striking. Although a number of
investigators have postulated the existence of such structures in turbulent shear flows
(Perry & Chong 1982; Moin & Kim 1985; Adrian, Meinhart & Tomkins 2000;
Tomkins & Adrian 2003; Hutchins, Hambleton & Marusic 2005), such a direct
evidence for their dominance has not been reported in any numerical or experimental
investigation of turbulent boundary layers since the flow visualization experiments
of Head & Bandyopadhyay (1981). In contrast to the present results, it has also
been reported that complete quasi-symmetric hairpin vortices are rarely observed in
turbulent boundary layers (Robinson 1991).
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Figure 3. Iso-surfaces of the second invariant of the velocity gradient tensor at t = 100.2T.
The iso-surfaces are coloured based on local values of u with higher u represented by red,
0 � u � 1.0. Six simultaneous sub-images were taken at this instant focusing on different
streamwise zones. x is normalized by the characteristic length scale inlet-boundary-layer
momentum thickness θ0. (a) 0 < x < 750, (b) 1687 <x < 2625, (c) 2625 <x < 3562, (d )
3562 <x < 4500, (e) 4500 <x < 5437; (f ) 5437 <x < 6375.
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Figure 4. Variation of Reθ with streamwise distance x/θ0. Solid line, present DNS; plus,
Blasius solution.

This is the first time that direct evidence (in the form of a solution of the
Navier–Stokes equations, obeying the statistical measurements, as opposed to
synthetic superposition of the structures) shows such dominance of these structures.
Therefore, we believe that preponderance of ‘forests’ of hairpins (Perry & Chong
1982) in turbulent boundary layer is a credible conceptual reduced-order model of
turbulent boundary layer dynamics. The primary reason that previous simulations
did not see this dominance might be related to the particular imposition of the
boundary conditions. For example, streamwise periodicity in channel flows (and
scaled periodicity of Spalart’s simulations) lead to a reintroduction of the hairpins
at the inflow, which would interact with the structures in the domain resulting in
their distortions. Furthermore, in the present simulations, instabilities on the wall
were triggered from the free stream, and not by trips or other artificial numerical
boundary conditions. It should be noted that the use of smoke in flow visualizations
of Head & Bandyopadhyay (1981) resulted in a striking but indirect demonstration
of the presence of hairpin vortices. In addition, the relatively large trips used in their
tunnel may lead one to speculate that hairpins were actually put in their flow, and
did not evolve naturally and owing to flow instabilities. This finding strongly suggests
that a study on the time-dependent dynamics of the turbulent ZPGFPBL using the
present approach will be valuable. In the remainder of this paper, we mainly focus
on the study of time-independent boundary layer statistics.

3.2. Global statistics

Figure 4 shows the variation of Reθ with streamwise distance x. For instance,
Reθ = 200 is located at x = 895θ0, and Reθ =900 is located at x = 5981θ0. Boundary
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layer thickness 0.01δ/θ0; plus, displacement thickness 0.1δ∗/θ0; diamond, shape factor H .
Dotted line, Nagib et al. (2007). Experimental data: circle, Murlis et al. (1982); triangle,
Adrian et al. (2000).

layer integral parameters are presented in figure 5. The boundary layer thickness
based on 99 % of the constant free stream velocity U∞ is 7.5θ0 at the inlet and
reaches 105θ0 at Reθ = 900, a 14-fold increase. This reinforces the need to have the
computational domain’s upper domain boundary located sufficiently away from the
wall. Although the current upper boundary is 200δ away from the wall at the inlet, it
is merely 14δ away from the wall at the exit. Although Reθ , δ and Cf all have departed
from their corresponding Blasius solution by x = 895θ0 or Reθ =200, the displacement
thickness δ∗ remains close to the Blasius solution at least until Reθ = 280. Thus, δ∗ is
not a sensitive measure of a boundary layer’s departure from Blasius. On the other
hand, the shape factor H = δ∗/θ is an excellent indicator of the boundary layer state.
Figure 5 suggests that in the early transitional region there is good agreement between
the computed shape factor and the Blasius solution. By Reθ = 180 the boundary layer
has moved substantially away from the laminar solution. The late transitional region
is marked by a large streamwise gradient of H . By Reθ = 750, the variation of H

with streamwise distance begins to level off substantially, suggesting that transition
is complete and the flow can be considered as turbulent. In the turbulent region,
the present shape factor agrees well with the experimental measurements and the
analytical curve of Nagib, Chauhan & Monkewitz (2007).

The dominating effect of the streamwise pressure gradient on boundary layer
development was recognized early by Schubauer & Skramstad (1947). When the
streamwise pressure gradient deviates from nominally zero, other effects are often
overwhelmed and become secondary and less important. It is therefore crucial
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Figure 6. Mean streamwise pressure gradients as a function of Reθ . Solid line without symbol:
wall static pressure coefficient Cpw; solid line with symbols: open circle, β = (δ∗/τw)(∂p̄/∂x)
at y = 187.5θ0; triangle, β at y = 375θ0; diamond, β at y = 750θ0; symbols without line: solid
circle, −20P + = (ν/ρu3

τ )(∂p̄/∂x) at y = 187.5θ0; square, −20P + at y = 375θ0; plus, −20P + at
y =750θ0.

for numerical simulations on transitional or turbulent ZPGFPBL to document
the variations in pressure gradient with streamwise distance inside and outside
the boundary layer. Figure 6 presents the mean wall static pressure gradient
Cpw =(py =0,x − py =0,x = 0)/(

1
2
ρU 2

∞), and two other mean streamwise pressure gradient
parameters, β and P +. It is impractical in either experiments or DNS to achieve
a strictly zero streamwise pressure gradient. For example in the work of Adrian
et al. (2000) streamwise pressure gradient was made to vanish to within 0.2 %–3.8 %
of the free stream dynamic pressure over a test-section length of approximately
80δ, by adjusting the contour of the test-section ceiling, depending upon Reynolds
number.

The issue that arises naturally is how to judge the smallness of the streamwise
pressure gradient. Here, we quantify the deviation of our streamwise pressure gradient
from nominally zero by comparing our parameters with those used by Spalart &
Watmuff (1993) in their study of an attached flat-plate turbulent boundary layer under
moderate levels of imposed favourable and adverse streamwise pressure gradients. In
the boundary layer of Spalart & Watmuff (1993), Cpw varies between −0.45 and 0.1
over a streamwise range of 500 < Reθ < 1600. In our boundary layer Cpw is bracketed
by 0 and 0.012 over the streamwise range of 80<Reθ < 940. Near the exit the
convective outflow boundary condition causes rather a rapid descent in our Cpw . The
β parameter of Spalart & Watmuff varies from −0.3 to +2; this is contrasted with
our much narrower variation range for β from −0.03 to 0.01. In the flow of Spalart
& Watmuff, −0.009 < P + < 0.02; in our flow, −0.0007 <P + < 0.0005. It is quite clear
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Figure 7. Mean streamwise pressure gradient (∂p/∂x)δ/(1/2ρU 2
∞) × 103 as a function of y/δ.

Circle, Reθ = 200; diamond, Reθ = 400; triangle, Reθ = 600; plus, Reθ = 800.

that the streamwise pressure gradient in our flow is approximately 1–2 orders of
magnitude weaker, depending upon location, than in the flow of Spalart & Watmuff
(1993). The streamwise pressure gradient as a function of the wall-normal distance
is presented in figure 7 for four different momentum thickness Reynolds numbers.
Contrary to the classical boundary layer assumption, the wall-normal variation of the
pressure gradient is not negligible within the boundary layer in the post-transition
regime.

Skin-friction coefficient Cf is shown in figure 8. At about Reθ = 750 the slope of
Cf turns to mildly negative, indicating that the transition process may have been
completed. In the turbulent region, Cf agrees with the experimental data of Murlis,
Tsai & Bradshaw (1982) and Adrian et al. (2000). It is interesting that instantaneous
skin friction in the turbulent region displays extremely large fluctuations (which
may be related to the regular passage of isotropic turbulence slabs). The minimum
instantaneous value at this particular instant almost reaches zero, and peak values
are four to five times larger than the mean. Figure 9 shows the turbulent skin-friction
intensity, τ

′+
w,rms, and wall-pressure intensity distributions. The r.m.s. level of the wall

shear stress fluctuations in the turbulent region is in good agreement with the 40 % of
the mean value measured by Alfredsson et al. (1988), notwithstanding the difference
in the Reynolds number. The data of Kim et al. (1987) show that τ

′+
w,rms = 36 % of the

mean skin friction in their channel flow. In this figure, the wall-pressure fluctuations
are normalized by the mean wall shear stress. The sharp drop and rise of p

′+
w,rms at

the inlet and outlet are related to the imposed boundary conditions. Our p
′+
w,rms in the

turbulent region is somewhat lower than the value of Spalart (1988) (see figure 26),
but still within the general range of the experimental data reviewed by Willmarth
(1975).
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The mean skin-friction coefficient Cf follows the Blasius solution to within 1 % until
Reθ = 180, which is presumably the average laminar breakdown station. Apparently
the imposed moderate levels of free stream disturbances do not alter the Blasius layer
in the early transitional region. The importance of maintaining the Blasius layer prior
to breakdown was recognized early by Schubauer & Skramstad (1947). If the imposed
disturbances are sufficiently large so that the base flow is substantially modified, there
would be no early transitional region in which linear stability theory would apply. In
that case one cannot distinguish the base flow from the perturbed flow since the base
flow itself has also been distorted. Therefore, even in bypass transition investigations,
it is still important to properly control the disturbance level if one intends to apply
linear theory to the early transitional region.

Previous studies have shown that a turbulent boundary layer can be maintained for
Reθ as low as 225–300. However, the converse statement is not true; Reθ =300 will
not guarantee a ZPGFPBL to be turbulent. For example, the present boundary layer
remains transitional until approximately Reθ = 750. At the inlet (Reθ =80), figure 8
shows that the introduced isotropic turbulence slab produces only a moderate level
of instantaneous skin-friction deviation away from the Blasius value. But outside the
location range of the slab, the instantaneous skin-friction follows the Blasius profile in
the early transitional region. Overall, all these global parameters indicate that under
the prescribed flow design, the present boundary layer breakdown occurs on average
at Reθ = 180 and transition is complete by Reθ = 750.

3.3. Statistics in the turbulent region

3.3.1. Mean velocity

Statistics of the computed boundary layer at one turbulent station, Reθ = 900, are
presented in detail in this section. The boundary layer thickness normalized by the
inner wall coordinate is δ+ = 400. Mean velocity u/U∞ as a function of the outer wall-
normal coordinate y/δ∗ is compared with the experimental data of Purtell, Klebanoff
& Buckley (1981) at Reθ =1000 in figure 10.

Figure 11 shows the computed mean-velocity profile u+ plotted in semi-logarithmic
form. There is good agreement with the linear profile below y+ = 4, and with the
experimental data of Murlis et al. (1982) at Reθ = 791 for y+ > 40. The agreement is
interesting considering the fact that the present u+ is obtained by scaling the mean
velocity with a directly computed wall shear stress, and the experimental u+ was
obtained by scaling the mean velocity with a wall shear stress from a best fit to an
assumed log law. Our u+ also agrees well with the DNS of Spalart (1988) at Reθ =670
except in the wake region.

Figure 12 shows mean velocity deficit (U∞ −u)/uτ as a function of y/δ together with
the experimental data of Erm, Smits & Joubert (1985), Smith (1994) and DeGraaff
& Eaton (2000) over a wide range of 617 <Reθ < 4980. Quite clearly, the universal
velocity defect scaling law does not apply for these data. The modified scaling of
(U∞ − u)δ/(U∞δ∗) proposed by Zagarola & Smits (1998) yields a slightly better
collapse across certain regions and is also shown in the figure. Profiles of du+/dlny+

and dlnu+/dlny+ are shown in figure 13. Our results show good agreement with those
from Spalart (1988) and with the composite curve of Monkewitz et al. (2007). These
two sets of low-Reynolds-number DNS also display nearly identical trends as those
of Smith’s high-Reynolds-number experimental data for the mean velocity gradients.
The trends of the mean velocity gradient profiles presented in figure 13 are also
qualitatively similar to those discussed in detail by Wu & Moin (2008) in a DNS
study on the turbulent pipe flow.
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Figure 10. Normalized mean velocity profile u/U∞ as a function of outer coordinate y/δ∗

in the turbulent region. Solid line, present DNS at Reθ = 900; circle, Purtell et al. (1981) at
Reθ =1000.
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present DNS at Reθ = 900; dashed line, u+ = y+; solid circle, Murlis et al. (1982) at Reθ = 791;
plus, Spalart (1988) at Reθ = 670.
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Figure 12. Mean velocity defect profiles as a function of outer coordinate y/δ in the turbulent
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Figure 14. Turbulence intensities as a function of outer coordinate y/δ in the turbulent region.
Lines are from the present DNS at Reθ =900. Solid line, u

′+
rms; dotted line, v

′+
rms; dashed line,

w
′+
rms; solid circle, Purtell et al. (1981) at Reθ = 1340; all other symbols, Erm & Joubert (1991)

at Reθ = 697.

3.3.2. Second-order statistics

Honkan & Andreopoulos (1997) compared the profiles of Reynolds stresses from
11 groups. Their study showed that the differences are substantial especially near the
wall. In particular, they observed that existing experimental data of the Reynolds
shear stress in the near wall region for a ZPGFPBL show no consistent trends and
do not agree with the DNS of Spalart, as indicated by their figure 11(c). Over a
narrow Reynolds number range of 2600 < Reθ < 2790 the peak streamwise intensities
differ by more than 20 %, and the difference in the wall-normal intensity is over 50 %.
Honkan and Andreopoulos attributed these discrepancies to spatial resolution effects
of the probes, differences in the measurement techniques and the errors involved in
controlling the experimental conditions. They also commented that the classical data
from Klebanoff may be contaminated by the upstream long roughness strip used to
trip the boundary layer.

Figures 14 and 15 show the normalized turbulence intensities at Reθ = 900 in
outer and inner wall units, respectively. Also shown in the figures are the data of
Erm & Joubert (1991) as well as the streamwise turbulence intensity u

′+
rms from Purtell

et al. (1981) at Reθ = 1340. Purtell et al. did not measure the other two turbulence
intensity components. Spalart’s data are also included in figure 15. The agreement
of u

′+
rms between the present DNS and low-Reynolds-number experimental data is

satisfactory. The peak of u
′+
rms is 2.77 located at approximately y+ = 13. A plateau

in the wall-normal turbulence intensity v
′+
rms ≈ 0.95 spans from y+ = 60 to 100. The

peak of v
′+
rms is located at approximately 0.2δ or 80 inner wall units. The survey

done by Honkan & Andreopoulos (1997) shows that the plateau value in v
′+
rms varies
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Figure 15. Turbulence intensities as a function of inner wall coordinate y+ in the turbulent
region. Lines are from the present DNS at Reθ = 900. Solid line, u

′+
rms; dotted line, v

′+
rms; dashed

line, w
′+
rms; solid circle, Purtell et al. (1981) at Reθ =1340; plus, Spalart (1988) at Reθ =670.

over a substantial range from 0.8 to 1.4 as reported by different groups for various
Reynolds numbers. The current value of 0.95 is close to that from Spalart. Spanwise
turbulence intensity w

′+
rms also exhibits a plateau of 1.25 spanning from y+ = 20 to 60,

approximately. The experimental data of Honkan & Andreopoulos (1997) in their
figure 14 displays a very near-wall peak in w

′+
rms at y ≈ 0.02δ. This is either due to their

somewhat higher Reynolds number or experimental errors. Outside the boundary
layer, it is seen from figure 14 that in the current boundary layer at Reθ = 900 the
three turbulence intensities nearly collapse, indicating an approach to isotropy just
outside the boundary layer.

From the time of t = 60T to t = 100T, velocity signals were saved at an array
of preselected locations for the purpose of frequency spectra computation. All the
recorded points are located in the z = 187.5 plane. The procedure for computation of
the frequency power spectrum follows the one discussed in Choi & Moin (1990). The
N = 80 000 time samples were divided into overlapping segments, each containing
1024 points. Figure 16 shows the spectra of streamwise velocity fluctuations at
four y-locations inside the boundary layer in the turbulent region at Reθ =915
(x =6094θ0). The first y-location of 0.0133δ is equivalent to y+ = 5.27. At this

location, u
′2 has relatively low energy levels in the intermediate frequency range

of 100 <ωδ/uτ < 1000. The spectra exhibit an approximate −1 slope in the low-
frequency region of 30 < ωδ/uτ < 90, similar to the −1 slope reported from the pipe
flow measurements of Perry, Henbest & Chong (1986). Turan, Azad & Kassab (1987)
reported that in turbulent ZPGFPBL, the logarithmic law of mean velocity and the
k−1

x spectral law appear to exist at the same wall-normal position simultaneously.
The spectra of streamwise velocity fluctuations do not yield a significant range with
−5/3 slope in the intermediate frequency range (most likely due to the low Reynolds
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Figure 16. Frequency spectra of streamwise velocity fluctuations in the turbulent region
at Reθ = 915. Solid circle, y =0.0133δ (y+ = 5.27); diamond, y = 0.0667δ (y+ = 26.43); plus,
y =0.267δ; triangle, y =0.533δ. Solid lines from left to right, −1 slope, −5/3 slope and −7
slope, respectively.

number of the DNS). Spectra of the wall-normal velocity fluctuations at the same
spatial locations are presented in figure 17. In the low frequency range of ωδ/uτ < 100
the spectra are relatively flat in the current logarithmic scale. Compared to the results
for u

′2 the well-known −5/3 slope can now be more easily discerned from the v
′2

spectra in the intermediate frequency range of 200< ωδ/uτ < 400.
Shear stresses at Reθ = 900 are presented in figures 18 and 19 using outer and

inner wall units, respectively. Also shown in the figures are the Reynolds shear stress
results from Spalart (1988), Honkan & Andreopoulos (1997) and DeGraaff & Eaton
(2000). The most notable feature from these two figures is the overshoot in the total
shear stress τ+ = − u

′
v

′ + + (νdu/dy)+ in the region y+ < 20. The normal gradient
is still zero at the wall. This feature will be discussed in more detail in the next
subsection. The prevailing view, and a basis for turbulence theories in the wall layer,
is that in a ZPGFPBL the maximum total shear stress is attained at the wall, and the
wall-normal variation of τ is a monotonic decrease from the wall to the boundary
layer edge. Our results in figures 18 and 19 do not support this notion.

Budget terms in the mean streamwise momentum transport equation are shown in
figure 20 for the near-wall region at Reθ = 900. Except for the gradients of viscous
and Reynolds shear stress terms, all other terms are multiplied by a factor of 100
to display their dependency on y+. Clearly the dominant terms are the wall-normal
derivatives of the shear stresses which balance each other. The balance term shows
that the calculation has reached a statistically steady state.

The good agreement between our boundary layer statistics with classic ZPGFPBL
experimental data in the turbulent region downstream of Reθ = 750 suggests that they
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Figure 17. Frequency spectra of wall-normal velocity fluctuations in the turbulent region
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Figure 18. Reynolds and total shear stresses as a function of outer coordinate y/δ. Solid line,
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Reθ = 1430; plus, Spalart (1988) at Reθ = 670.
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Figure 21. Assessment of the free stream disturbance effect on boundary layer statistics using
Reynolds shear stress at Reθ = 900. Solid line, free stream disturbance from passing wakes
constrained to be 6δ away from the wall at the inlet; dotted line, free stream disturbance from
unconstrained passing wakes; dashed line, present simulation; circle, Honkan & Andreopoulos
(1997) at Reθ = 2790; diamond, DeGraaff & Eaton (2000) at Reθ = 1430; plus, Spalart (1988)
at Reθ = 670.

bear negligible signatures of the decaying free stream turbulent slab. This point is
further demonstrated by figure 21 which compares the present Reynolds shear stress
profile at Reθ = 900 with those obtained from two additional DNS calculations of
a different ZPGFPBL under the perturbation of free stream passing wakes using a
procedure similar to that of Wu et al. (1999).

3.4. Statistics in the late transitional region

The present boundary layer undergoes a well-controlled transition process. The
streamwise pressure gradient is nominally zero, and the imposed perturbations inside
the boundary layer are weak. This makes it possible to divide the entire process
into early and late transitional stages. The early transitional region is a Blasius layer
under weak perturbations in which statistical measures such as integral parameters
as well as local velocity profiles deviate only slightly from their theoretical values (see
figures 8). Both the skin-friction coefficient Cf and the shape factor H are excellent
indicators for identifying the late transitional stage. Structurally, the late transitional
region is marked by the onset of turbulent spot from the low end, i.e. breakdown of
the Blasius layer.

The statistics at six streamwise stations from Reθ = 200 to 800 are documented,
although the last station may also be considered as turbulent. Mean velocity profiles
are shown in figure 22; turbulence intensities and pressure fluctuations are presented
in figure 23–26, and Reynolds shear stress is presented in figure 27. Spalart’s DNS
statistics at Reθ =670 are added in all these figures to serve as a reference indicator
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Figure 22. Mean velocity profile u+ as a function of inner wall coordinate y+ in the late
transitional region. Plus, Reθ =200; cross, Reθ = 300; triangle, Reθ =400; diamond, Reθ = 500;
dashed line, Reθ = 600; solid line, Reθ = 800; circle, Spalart (1988) at Reθ = 670.
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Figure 23. u
′+
rms as a function of outer coordinate y/δ in the late transitional region. Plus,

Reθ =200; cross, Reθ = 300; triangle, Reθ = 400; diamond, Reθ = 500; dashed line, Reθ = 600;
solid line, Reθ = 800; circle, Spalart (1988) at Reθ = 670.
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Figure 24. v
′+
rms as a function of outer coordinate y/δ in the late transitional region. Plus,

Reθ = 200; cross, Reθ = 300; triangle, Reθ =400; diamond, Reθ = 500; dashed line, Reθ = 600;
solid line, Reθ = 800; circle, Spalart (1988) at Reθ = 670.
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Figure 25. w
′+
rms as a function of outer coordinate y/δ in the late transitional region. Plus,

Reθ = 200; cross, Reθ = 300; triangle, Reθ =400; diamond, Reθ = 500; dashed line, Reθ = 600;
solid line, Reθ = 800; circle, Spalart (1988) at Reθ = 670.
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Figure 26. p
′+
rms as a function of outer coordinate y/δ in the late transitional region. Plus,

Reθ =200; cross, Reθ = 300; triangle, Reθ = 400; diamond, Reθ = 500; dashed line, Reθ = 600;
solid line, Reθ = 800; circle, Spalart (1988) at Reθ = 670.
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Figure 27. −u
′
v

′ +
as a function of outer coordinate y/δ in the late transitional region. Plus,

Reθ =200; cross, Reθ = 300; triangle, Reθ = 400; diamond, Reθ = 500; dashed line, Reθ = 600;
solid line, Reθ = 800; circle, Spalart (1988) at Reθ = 670.



32 X. Wu and P. Moin

0.2 0.4 0.6 0.8 1.0 1.2
0

0.2

0.4

0.6

0.8

1.0

1.2

y / δ

τ+

Figure 28. τ+ as a function of outer coordinate y/δ in the late transitional region. Plus,
Reθ = 200; cross, Reθ = 300; triangle, Reθ =400; diamond, Reθ = 500; dashed line without
symbol, Reθ = 600; solid line, Reθ = 800.

of turbulent state. Note that our boundary layer thickness δ is based on the well-
accepted definition of 99 % of U∞, but Spalart’s δ was constructed differently. These
figures show that when plotted against y/δ, the peak locations of all three turbulence
intensities, pressure fluctuation and the Reynolds shear stress shift monotonically
towards the wall with an increase in the streamwise distance x or equivalently Reθ .
The fact that v

′+
rms at Reθ = 200 is still increasing with y at y/δ =1.2 indicates that the

length scale of the free stream turbulence is somewhat larger than the local δ.
Figure 28 shows the variation of the total shear stress with outer coordinate y/δ

at six streamwise stations from Reθ = 200 to 800. Starting from no overshoot in the
Blasius layer at Reθ =200, the peak total shear stress gradually rises to about 1.1τw at
Reθ = 500, where transition is near completion. From Reθ = 500 to 800 the overshoot
gradually decreases, but the minor excess over wall shear stress persists well into the
turbulent region.

In the present flow, the early transitional region is from the inlet of Reθ = 80
at x = 0 to approximately Reθ = 180 corresponding to x = 700θ0. In this simulation,
the streamwise pressure gradient is kept to nearly zero, which results in a slightly
perturbed laminar boundary layer in this region with minimal deviation from the
Blasius profile. For example, we have seen that the relative drift of the mean skin-
friction coefficient away from the analytical Blasius solution is less than 1 %. We
found that in the early transitional region, the mean velocity profiles differ from
their corresponding Blasius solutions by no more than 0.7 %U∞. Figure 29 shows
that in the early transitional region, the peak locations of u

′

rms scale with the Blasius
coordinate η.
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Figure 29. u
′
rms/U∞ as a function of η = y(U∞/νx)1/2 in the early transitional region. Circle,

Reθ = 100; box, Reθ =120; triangle, Reθ =140; plus, Reθ = 160; diamond, Reθ =180.

3.5. Transition mechanism

Full three-dimensional DNS velocity data fields collected sequentially from 100T
to 101T at a time interval of 0.05T are used here to address bypass transition
mechanism questions; the most important of these concern the location and cause of
the breakdown event.

Figure 30 shows the decay of free stream disturbance as the initially isotropic
turbulent patch is convected over the plate using spanwise-averaged turbulence
intensities as a function of streamwise coordinate and time. In this figure, the
intensity level drops from 5 % near the inlet to slightly less than 2 % near the
exit. These phase-dependent disturbance levels do not have exactly the same meaning
as the time-averaged intensity levels used in continuous free stream turbulence studies
because of the highly localized nature of the present disturbances. The time-averaged
free stream turbulence intensity level at Reθ =900 is only 0.6 % as indicated by
figure 14.

It is of interest to clarify the role of Tollmien–Schlichting waves, if any, in the present
laminar boundary layer. Figure 31 shows the wall-normal distribution of u

′

rms at two
x-stations very close to the inlet for the instant of 100.1T. As also shown in the figure
by the experimental data of Schubauer & Skramstad (1947), if Tollmien–Schlichting
waves were dominant in the laminar boundary layer, u

′

rms would have exhibited a
near-wall peak below y = δ∗ and a much lower secondary peak at y ≈ 3δ∗. Between
the primary and secondary peaks u

′

rms dips to a minimum close to zero. The DNS
profiles presented in figure 31 cannot be attributed to Tollmien–Schlichting waves.
As shown in the remainder of this section, the present boundary layer transitions
through a bypass route.
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Figure 30. Decay of spanwise-averaged free stream turbulence intensities as a function of
streamwise coordinate x/θ0 at the wall-normal location of y/θ0 = 281 (see also figure 1 for the
slab locations at different instants). Solid line, u

′
rms/U∞ at 100.4T; dashed line, u

′
rms/U∞ at

100.0T; dotted line, v
′
rms/U∞ at 100.3T; dash-dotted-dotted line, w

′
rms/U∞ at 100.65T.
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Figure 31. Spanwise-averaged streamwise turbulence intensity u
′
rms/U∞ in the early

transitional region at t = 100.1T as a function of wall-normal coordinate, y/δ∗. Solid line, at
Reθ = 100; dotted line, at Reθ =120; circle, a typical distribution of Tollmien–Schlichting wave
from Schubauer & Skramstad (1947).
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Figure 32. Iso-surfaces of u/U∞ = 0.8 at four consecutive instants showing the time and
streamwise location of breakdown. (a) t = 100.45T; (b) 100.5T; (c) 100.55T (immediately
before breakdown); (d ) 100.6T (breakdown).
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Figure 33. Iso-surfaces of u at the instant of 100.55T immediately prior to breakdown. (a)
Deep inside the boundary layer with u/U∞ = 0.3; (b) near the boundary layer edge with
u/U∞ = 0.99.
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Figure 34. For legend see facing page.

The iso-surfaces of u presented in figure 32 suggest that breakdown event within this
cycle occurs at the instant of 100.6T over the streamwise region of 850 < x/θ0 < 1100.
These iso-surfaces are generally cone-shaped with tips in the downstream end. A
bulge in the iso-surface corresponds to low streamwise momentum being transported
away from the wall, i.e. negative u

′
at the local elevation. As shown in figure 33,

immediately prior to breakdown (t = 100.55T) the iso-surfaces of u =0.99U∞ (at the
boundary layer edge) exhibit a number of aligned bulges in the streamwise direction,
corresponding to a local pattern of alternating negative and positive u

′
near the

boundary layer edge.
The aligned bulges in the iso-surfaces of u at the boundary layer edge are related

to the heads of three hairpin vortices in a packet. From figures 3(a) and 34, it is
clear that a Λ-shaped vortex structure has been formed inside the boundary layer at
100.25T from a receptivity process. The two leg elements of the Λ structure develop
into two oblique quasi-streamwise vortices at 100.35T with the disappearing of the
middle joint portion of the Λ. A packet of three hairpin vortices emerges out of this
quasi-streamwise vortex pair at 100.5T and 100.55T. Breakdown follows at 100.6T.
Figure 34 also clearly shows that at the same time when the hairpin packet is being
developed, a number of new Λ structures also gradually emerge in different areas of
the flow out of quasi-spanwise structures.
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Figure 34. Iso-surfaces of the second invariant of the velocity gradient tensor at eight
consecutive instants showing the vortex structures before and during breakdown. The
iso-surfaces are coloured based on local values of u with higher u represented by red,
0 � u � 1.0. (a) t = 100.25T; (b) 100.3T; (c) 100.35T; (d ) 100.4T; (e) t = 100.45T; (f )
t =100.5T; (g) t = 100.55T; (h) t = 100.6T.

The bypass transition mechanism observed in the present ZPGFPBL is similar
to observations in several previous studies of spatially developing laminar boundary
layer under localized disturbances. Acarlar & Smith (1987) reported experimental
evidence of hairpin vortices resulting from continuous injection of fluid from
the wall into a laminar boundary layer. Chaotic structures developed subsequent
to the formation of the hairpins. Low-speed streak-like structures were observed
between the legs of the hairpin vortices. Singer & Joslin (1994) performed spatially
developing DNS of a laminar boundary layer under localized wall-normal fluid
injection. An initial vortex was triggered by the injection. The legs of the vortex were
stretched into a hairpin shape as it is convected downstream. Multiple hairpin vortex
heads developed between the stretched legs, which eventually resulted in a young
turbulent spot. A more recent related work was reported by Kim, Sung & Adrian
(2008).

Several previous studies on laminar boundary layer under the perturbation of
continuous free stream turbulence emphasized on the role of elongated negative u

′
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structures (streaks), e.g. Jacobs & Durbin (2001), Brandt et al. (2004) and Zaki &
Durbin (2005). Streaks are abundant in the present ZPGFPBL prior to breakdown
(see figures 32 and 33). These cone-shaped streaks appear to be the result of the
transport of low streamwise momentum fluid away from the wall by quasi-streamwise
vortices as they convect downstream. Based on flow visualizations in the present
ZPGFPBL, the streaks appear to be merely a kinematic feature (symptom); the
nonlinear dynamical development of Λ-shaped vortices into hairpin packets is
responsible for the breakdown of the Blasius layer.

4. Concluding remarks
We have taken a Blasius layer from Reθ = 80 through transition to a low-

Reynolds-number turbulent ZPGFPBL in a well-controlled manner. The quality
of the simulation is manifested by the close adherence of the statistics including
skin friction over an extended early transitional region to the Blasius solution, and
good agreement with a number of classical experimental datasets in the turbulent
region. The perturbation introduced for promotion of transition is weak, intermittent
and leaves faint footprints on the downstream ZPGFPBL. The full velocity field of
the isotropic turbulence patch introduced in the free stream at Reθ = 80 is available
in raw form so that the inflow condition is precisely defined and repeatable without
ambiguity. The discovered minor overshoot of total shear stress has not been reported
before. It is contrary to the common belief that total shear stress varies monotonically
with wall distance in a spatially developing, low-Reynolds-number (Reθ < 1000 in this
case) turbulent ZPGFPBL. It is quite obvious that this overshoot is a residual
effect of boundary layer transition and may gradually diminish as the ZPGFPBL
develops further downstream. It is notable that the overshoot was absent in previous
ZPGFPBL simulations using rescaling procedures or periodic boundary condition
in the streamwise direction. It is well known that laboratory low-Reynolds-number
turbulent ZPGFPBLs are affected by the actual low value of the Reynolds number,
and by the type of tripping device used. A case in point is the work of Erm &
Joubert (1991) in which a series of experiments were performed to demonstrate such
influences. Our observed total shear stress overshoot in the turbulent region is a
diminishing effect of transition, and is unlikely to persist in fully developed turbulent
boundary layers.

Breakdown in the present ZPGFPBL bypass transition is due to the hairpin
packets arising from the obliquely oriented legs of upstream disjointed Λ vortices.
This mechanism is consistent with a number of previous experimental and numerical
studies of spatially developing laminar boundary layer under localized perturbations
in the wall region. This mechanism also bears similarity to the secondary instabilities
in boundary layer natural transition (Herbert 1988). Bypass transition was defined as
the primary instability in natural transition, i.e. the Tollmien–Schlichting mechanism
is bypassed. It is logical to expect, as indeed in the present ZPGFPBL, that a well-
controlled bypass transition will proceed along a path broadly resembling one of the
secondary instabilities in natural transition.

The striking preponderance of hairpin vortical structures in the limited flow
visualizations presented in this paper suggests that an in-depth study on the time-
dependent dynamics of the turbulent ZPGFPBL should be fruitful. This is the
first time that direct evidence (in the form of a solution of the Navier–Stokes
equations, obeying the statistical measurements, as opposed to synthetic superposition
of the structures) shows such dominance of these structures. Specifically, it would be
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interesting to study any possible connections between the hairpin vortices and possible
large and very-large scale motions in a ZPGFPBL such as those observed indirectly
in the experiments of Adrian et al. (2000) and Hutchins & Marusic (2007). This may
require an extension of the computational domain streamwisely for the ZPGFPBL to
reach Reθ ≈ 2000. Additionally, it would be important to understand the underlying
reasons for the vivid appearance of these structures and its relation to the specific
prescription of the inflow conditions in the present simulation.

The present computational statistics have been posted on the Stanford University
Centre for Turbulence Research web site (http://ctr.stanford.edu) for public access.
The isotropic turbulence slab used for inflow perturbation is available on compact disk
through e-mail request. A sequence of 20 three-dimensional instantaneous velocity
fields is also available for user-supplied external hard-drive.

The computer program used in this study was developed by the late Dr Charles D.
Pierce of the centre for Turbulence Research at Stanford. This work was supported by
the Department of Energy’s ASC Program, NSERC Discovery Grant, Department of
Defense Academic Research Program and the Canada Research Chair Program. The
simulations were performed on the IBM terascale parallel machines at the San Diego
Supercomputing centre. We thank Professor Peter Bradshaw for his very detailed
comments on the entire manuscript. We also thank Dr Philippe Spalart for his
comments on figures 18 and 28.
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